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J .  Phys. A: Math.  Gen .  18 (1985) 1167-1172. Printed in Great  Britain 

Complementarity relation between the USp(2 v) and S 0 * ( 2 d )  
Lie groups 
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Physique ThCorique et Mathematique C P  229, Universit i  Libre d e  Bruxelles, Boulevard 
du  Triomphe, B 1050 Brussels, Belgium 

Received 20 August 1984, in final form 2 October 1984 

Abstract. The  object of this paper consists in finding a complementary group with respect 
to U S p ( n )  within either irreducible representation ( ( l / 2 )d" )  or (( l /2)d"- '3/2)  of the real 
symplectic group Sp(2dn, R ) .  For such purpose,  we deal with the (full)  orthogonal group 
O i n ) ,  n = 2 v  or 2 v t  1 ,  a n d  the unitary symplectic group USp(n ) ,  n = 2 v ,  in a unified way 
by introducing an  appropriate metric. A similar treatment applied to their complementary 
group determination leads to the well known Sp(2d, R )  group in the O ( n )  case, and  to 
the SO*(2d)  group in the U S p ( n )  case. 

1. Introduction 

Since Schwinger's (1952) pioneering work on SU(2), it has become customary to 
realise the generators of Lie groups in terms of boson operators. Such a realisation 
enabled Moshinsky (1963) and Baird and Biedenharn (1963) to construct bases for 
the irreducible representations (irreps) of the unitary group U( n) .  In his derivation, 
Moshinsky used a special type of relation between the unitary groups U( n )  and U( d )  
within the symmetrical irreps of U(dn),  which was generalised to arbitrary Lie groups 
and termed complementarity by Moshinsky and Quesne (1970). Later on, such a 
relation was dealt with in Howe's duality theory (1979), where it was referred to as a 
duality correspondence (Gelbart 1979). 

The object of this paper consists in finding a complementary group with respect 
to the unitary symplectic group USp(n) ( n  = 2v even), when the latter is embedded 
into the real symplectic group Sp(2dn, R ) .  The result of this development matches 
those obtained from another approach by Gross and Kunze (1977) and Gelbart (1979). 

In § 2, we recall the definition and main properties of complementary groups, and 
review the various examples known in the physical literature. In § 3, we construct the 
generators of a direct product subgroup G I  XG, of Sp(2dn, R ) ,  where G I  is USp(n),  
and G2 is shown to be SO*(2d). Finally, in § 4, we establish the complementarity of 
USp(n)and SO*(2d). 

2. Complementary groups 

Two groups G ,  and G2, whose direct product is contained in a larger group H, are 
referred to as complementary within a definite irrep p of H if there is a one-to-one 
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correspondence between all the irreps A ,  and A I  of G I  and Gz contained in this irrep 
of H (Moshinsky and Quesne 1970). Note that the complementary relation is sym- 
metrical; hence, in the following, GI  and G I  may be interchanged at will. 

Such a definition leads to the following important consequences: 
( i )  In the decomposition of p into irreps of G I ,  a given irrep A ,  of the latter appears 

with a multiplicity equal to the dimension of the corresponding irrep A 2  of the 
complementary group G,. 

transforming under G I  
according to equivalent irreps A , ,  and belonging to a given row r ,  of the latter (e.g. 
the set of highest weight states of the equivalent irreps A , )  span the carrier space of 
the G2 corresponding irrep A 2 ;  the multiplicity index (Y may therefore be chosen as 
Azrz, where A ?  is entirely determined by A ,  (hence redundant), and r z  denotes the row 
of A2.  

( i i i )  When restricted to the carrier space of p, the Casimir operators of G I  func- 
tionally depend upon those of G, .  

In the physical literature, various pairs of complementary groups are known among 
the classical Lie groups, when their generators are realised in terms of boson operetors. 
As mentioned in the introduction, the U ( n )  and U ( d )  subgroups of U(dn)  form such 
a pair. 

For the (full) orthogonal group O ( n ) ,  Chacon (1969) and Moshinsky and Quesne 
(1971) proved the existence of a complementary group, namely the subgroup Sp(2d, R )  
of the real symplectic group Sp(2dn, R ) .  As discussed in a recent paper (Couvreur e! 
a1 1983), this complementarity relation does not hold true in general when O(n)  is 
replaced by its rotation subgroup SO( n). 

For the unitary symplectic group USp(n)  ( n  even), Quesne (1973) proved the 
existence of a complementary group, which is again a non-compact subgroup of 
Sp(2dn, R ) .  However, iis precise nature was not determined beyond the fact that its 
root diagram was shown to belong to Cartan’s D, class (with I =  d ) .  The aim of the 
present paper is to fill in this gap. By introducing an appropriate, metric, we shall treat 
both O(n) and USp(n) ,  and their corresponding complementary groups in a unised 
way. Thence, as it will be shown elsewhere, all known results in the O( n )  representation 
theory (see e.g. Deenen and Quesne 1983, Quesne 1984a, b) can be easily extended 

( i i )  In  the carrier space of p, the set of vectors 

to USp(n).  

3. Direct product group USp(2v) x SO*(2d)  

Let us take for G I  either the orthogonal group O ( n )  or the unitary symplectic group 
USp( n). They are made of those n x n matrices A which respectively preserve a bilinear 
symmetrical or antisymmetrical metric g, i.e., satisfy the condition Ag A” = g, where * 
stands for transposed. We can accommodate both choices for g by choosing the 
symmetry condition i = Eg, where F = + 1. In addition, we assume g to be normalised 
according to the relation g i  = I. The O( n )  and USp( n )  groups will be designated by 
the common notation G ( n ) .  For the orthogonal group, n may be either even or odd 
( n  = 2v or 2 v +  l ) ,  whereas for the symplectic one, it must be even ( n  = 2v).  

s, f = 1 , .  . . , n t ,  can be realised in terms of dn boson 
creation operators q,,, i = 1 , .  . . , d,  s = I , .  . . . , n, and the corresponding annihilation 

The G ( n )  generators 

f For E = + I ,  we actually deal with the Lie algebra of SO(n).  
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operators tis, as follows (Lohe 1974): 

where the operators 

are the generators of the U( n )  group whereof G( n) is a subgroup. The A,, generator 
commutation relations can be written as 
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Moreover, its symmetry and Hermiticity properties are respectively given by 

and 

( E , / ) -  = E,,, (0;)- = D,J. (13) 

We shall denote by G'(2d) the Lie group generated by Db, D,, and E,]; subsequently 
G'(2d) will play the role of the G, group. In addition to the group chain (7), we also 
obtain the two chains 

Sp(2dn, R )  2 G'(2d) 3 U(d),  (14) 

and 

Sp(2dn, R )  2 G ( n )  xGC(2d) ,  (15) 

where U(d)  is generated by the E, operators. 
For O(n ) ,  i.e. E =+1 ,  ( l l ) ,  (12), and (13) define the well known Lie algebra of 

Sp(2d, R ) .  For USp(n),  i.e. E = -1, we shall proceed to prove that those equations 
characterise the Lie algebra ofthe rather unusual non-compact group SO*(2d) (Gilmore 
1974, Giinaydin and Saqlioglu 1982, Klimyk and Gavrilik 1984). 

For such a purpose, let us start from the compact S O ( 2 d )  group generators 
L P U  = - L  UP = -(LPu)',  p, U = 1 , .  . . , 2 d ,  satisfying commutation relations similar 
to (3) (with g = I ) ,  and replace the p index by a pair of indices icy, taking the values 
i = 1,. . . , d, and cy = 1,2.  The following linear combinations of L,o , lp ,  

( 1  I C ' )  

The operators E ,  generate the U ( d )  subgroup of SO(2d). 
The SO*(2d) Lie algebra is now obtained from that of SO(2d)  by applying the 

Weyl unitary trick to the generators D', and D,,, belonging to the subspace orthogonal 
to the algebra of U(d)  (Gilmore 1974). In this process, (1 lc') is converted into ( 1  IC), 
while the other equations defining the Lie algebra remain unchanged, which completes 
the proof. 

Note that for some low d values, S O * ( 2 d )  is locally isomorphic to other Lie groups. 
For d = 2 ,  we indeed have S0*(4) = SU(2) x SU( 1, l ) ,  where SU(2) and SU( 1, 1 )  are 
respectively generated by 

and 

and similarly for d = 3, S0*(6) = SU(3, 1 ) .  
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4. Complementarity of the USp(2v), SO*(2d) pair 

Let us consider the irreps of the groups in the chain (15). U p  to now, d was left 
unspecified. From now on, we shall assume that 2d c n, or equivalently d 

In the realisation ( 5 ) ,  and (6), the Sp(2dn, R )  group has only two (metaplectic) 
irreps. They are positive discrete series irreps, characterised by their lowest weight 
((1/2)d") or ((1/2)d"-'3/2), and their carrier space is the set of boson states with an  
even or odd boson number respectively. In the following, Sp(2dn, R )  will play the 
role of H, and p will be either one of its two irreps. 

The irreps of G ( n )  are finite dimensional, and characterised by some partition 
( A , A z .  . . A,)$.  Those of G'(2d) are positive discrete series, specified by their lowest 
weight ( A ;  + i n , .  . . , A',  + i n ) ,  where (A ' ,A ; .  . A;) is also some partition. Their lowest 
weight state P( q , , ) /O)  satisfies the following system of equations 

is j( E = + I )  or i < j(E = - l ) ,  

u t .  

D,P( 77,s 110) = 0, 

Et,P(77,,IO) = 0, i>j, (18) 

E,,P( 77,,)10) = ( A  & - I  - I  + t n  )P( 77m). 
From it the remaining states of the carrier space are obtained by applying the raising 
generators E,,, i < j, and Ob, is j ( E  = + 1 )  or i < j ( E  = - 1) .  

It was shown elsewhere with some specific choices for the metric g (Chac6n 1969, 
Quesne 1973) that (18) admits a solution which is at the same time the highest weight 
state of some G ( n )  irrep ( A I A z . .  . A,)  if and  only if A I  =A ' , ,  . . . , A d  =A;,  A d + l = .  . . = 
A,  = 0, and that under these conditions the solution is unique. Since a similar proof 
can be devised whenever using an arbitrary symmetric or antisymmetric metric, we 
may state the following result: both O ( n ) ,  Sp(2d, R ) ,  and USp(n),  SO*(2d) form a 
pair of complementary groups within either irrep (( 1/2)d") or (( 1/2)d"-'3/2) of 
Sp(2dn, R ) .  

As a final point, let us establish the existing relation between the first-order Casimir 
operators of G ( n )  and G'(2d), the latter being respectively defined by 

Q, = -$ g,, g l l  .dSIA, (19) 
51s I 

and 

Q,' = c [E$,, -m;n, + Dp;)I.  
I 

The eigenvalues of Q, corresponding to an  irrep ( A , / \ * .  . . A,,) is given by 

c p =  C A , ( A , + f l - 2 ~ + 1 - ~ ) ,  
I =  I 

while that of Q,' associated with an  irrep (A: + i n , .  . . , A', + i n )  is 
d 

( p c =  c ( A : + t n ) ( A : + $ n - 2 i + l - ~ ) .  
, = I  

+ d can be interpreted as the maximum row number of the G(n) irreps we are interested in. For a given 
row number, we could of course consider higher values of d, but this would unnecessarily complicate the 
discussion to follow. 
$ In the O ( n )  case, we also have the associate irreps which have more than U rows. 
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By using ( l ) ,  (2), ( 5 ) ,  ( 6 ) ,  and ( 9 ) ,  both @ and @‘ can be written in terms of the boson 
creation and annihilation operators. By reordering the latter, it is then straightforward 
to prove that the difference of the two Casimir operators is a multiple of the unit 
operator: 

@ - @ ‘ = $ n d ( 2 d - n + 2 ~ ) .  (23) 

Equation (23) can also be directly checked on the eigenvalues p and pc once the 
relation between the complementary irreps is taken into account. 
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